THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2058 Honours Mathematical Analysis I Tutorial 10 Date: November 22, 2024

- 1. Using the $\varepsilon \delta$ terminology, show that if $f : A \to B = f(A)$ and $g : B \to \mathbb{R}$ are two continuous functions, then $g \circ f : A \to \mathbb{R}$ is also a continuous function.
- 2. Show that $f: [0, +\infty) \to \mathbb{R}$ given by

$$f(x) = \frac{x}{x^2 + 1}$$

is uniformly continuous, using $\varepsilon - \delta$ terminology.

3. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a continuous function such that f(x+1) = f(x) for all $x \in \mathbb{R}$, show that f is uniformly continuous. You might use the fact that a continuous function on compact domain is uniformly continuous.

1. Using the $\varepsilon - \delta$ terminology, show that if $f : A \to B = f(A)$ and $g : B \to \mathbb{R}$ are two continuous functions, then $g \circ f : A \to \mathbb{R}$ is also a continuous function.

Pf: let 2>0 be given. let CEA.
Then since
$$g$$
 is ets on B, for any $\overline{c} \in B = 3$ do >0 st. if
be B, with $|b-\overline{c}| < d_0$,
 $|g(b) - g(\overline{c})| < \varepsilon$.
Since f is ets, $\exists S, >0$ st. for all $x \in A$ with $|x - c| < \delta_1$,
we bene theat $|f(k) - f(c)| < \delta_0$. Then taky $b = f(k)$, $\overline{c} = f(c)$
we see that $|g(f(x)) - g(f(c))| < \varepsilon$.

2. Show that $f:[0,+\infty)\to\mathbb{R}$ given by

$$f(x) = \frac{x}{x^2 + 1}$$

is uniformly continuous, using $\varepsilon-\delta$ terminology.

$$\begin{aligned} P_{1}^{f}: & \text{let } \epsilon > 0 \text{ he given} \cdot \quad \text{for } x, y \in [0, +\infty) \\ & \left| \frac{x}{x^{2}+1} - \frac{y}{y^{2}+1} \right| = \left| \frac{xu^{2}+x-yx^{2}-y}{(x^{2}+1)(y^{2}+1)} \right| \\ & = \left| \frac{xy(y-x)+(x-y)}{(x^{2}+1)(y^{2}+1)} \right| \\ & \leq |y-x| \left| \frac{xy}{(x^{2}+1)(y^{2}+1)} \right| + |y-x| \left| \frac{-1}{(x^{2}+1)(y^{2}+1)} \right| \\ & \quad \text{constdue extrem } 0 \leq x \leq 1 \\ & \quad x > 0 \\ & \leq 2(y-x) \\ & \quad x > 0 \\ & \quad x > 0$$

3. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a continuous function such that f(x+1) = f(x) for all $x \in \mathbb{R}$, show that f is uniformly continuous. You might use the fact that a continuous function on compact domain is uniformly continuous.

$$f(x) = f(x) - f(y) = f(x - Lx) - f(y - Lx) = f(x) - f(y) = f(x) - f(x) = f(x) - f(y) = f(x) - f(x) = f(x) = f(x) - f(x) = f(x) = f(x) = f(x) - f(x) = f(x)$$

٠